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An Introduction to Maximum 
Likelihood Estimation

3.1 CHAPTER OVERVIEW

Many modern statistical procedures in widespread use today rely on maximum likelihood 
estimation. Maximum likelihood also plays a central role in missing data analyses and is one 
of two approaches that methodologists currently regard as state of the art (Schafer & Gra-
ham, 2002). This chapter introduces the mechanics of maximum likelihood estimation in 
the context of a complete-data analysis. Although the basic estimation process is largely the 
same with missing data, understanding the basic estimation principles is made easier with-
out this additional complication.

The starting point for a maximum likelihood analysis is to specify a distribution for the 
population data. Researchers in the social and the behavioral sciences routinely assume that 
their variables are normally distributed in the population, so I describe maximum likelihood 
in the context of multivariate normal data. The normal distribution provides a familiar plat-
form for illustrating estimation principles, but it also offers the basis for the missing data 
handling procedure that I outline in Chapters 4 and 5. Although the normal distribution 
plays an integral role throughout the entire estimation process, the basic mechanics of esti-
mation are largely the same with other population distributions. For example, Chapter 6 
describes a maximum likelihood analysis that uses the binomial distribution for a binary 
outcome, and many of the key ideas from this chapter resurface in that example.

3.2 THE UNIVARIATE NORMAL DISTRIBUTION

Most applications of maximum likelihood estimation rely on the multivariate normal distribu-
tion. However, a univariate example is a useful starting point for illustrating basic estimation 
principles. As you will see, the estimation process is largely the same with multivariate data. 
The mathematical machinery behind maximum likelihood relies heavily on a probability 
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density function that describes the distribution of the population data. The density function 
for the univariate normal distribution is

 –.5(yi–µ)2
 1 ———— Li = ———e σ2 (3.1)
 √2πσ2

where yi is a score value, µ is the population mean, σ2 is the population variance, and Li is 
a likelihood value that describes the height of the normal curve at a particular score value. 
In words, the density function describes the relative probability of obtaining a score value 
from a normally distributed population with a particular mean and variance. Although the 
density function is complex, the driving force behind the equation is simply a squared z 
score, (yi–µ)2/σ2. This Mahalanobis distance term quantifi es the standardized distance be-
tween a score and the mean and largely determines the result of the equation. Density func-
tions typically contain a collection of scaling terms that make the area under the distribution 
sum (i.e., integrate) to one, and the portion of the equation to the left of the exponent symbol 
serves this purpose for the normal curve. These terms are not vital for understanding the 
estimation process.

To illustrate the probability density function, consider the IQ scores in Table 3.1. I de-
signed this small data set to mimic an employee selection scenario in which prospective 
employees complete an IQ test during their interview and a supervisor subsequently rates 
their job performance following a 6-month probationary period. Ultimately, maximum likeli-
hood uses the density function in Equation 3.1 to estimate the population parameters, but 

TABLE 3.1. IQ and Job Performance Data

  Job
 IQ performance

 78 9
 84 13
 84 10
 85 8
 87 7
 91 7
 92 9
 94 9
 94 11
 96 7
 99 7
 105 10
 105 11
 106 15
 108 10
 112 10
 113 12
 115 14
 118 16
 134 12
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understanding the basic estimation principles is easier when the parameter values are known. 
Consequently, I temporarily assume that the population mean is µ = 100 and the population 
variance is σ2 = 189.60.

The density function in Equation 3.1 describes the relative probability of obtaining a 
score value from a normally distributed population with a particular mean and variance. For 
example, consider two IQ scores, 99 and 87. Substituting yi = 99, µ = 100, and σ2 = 189.60 
into the density function yields a likelihood value of Li = .0289. Similarly, substituting an IQ 
score of 87 into Equation 3.1 returns a likelihood of Li = .0186. Although they resemble 
probabilities, it is more accurate to think of a likelihood value as the relative probability of 
drawing a particular IQ score from a normal distribution with a mean of 100 and a variance 
of 189.60. Consequently, it is incorrect to say that an IQ score of 99 has a probability of 
.0289, but it is true that an IQ score of 99 is more probable than a score of 87. (With a con-
tinuous score distribution, there are an infi nite number of yi values, so the probability of any 
single score is effectively zero.) Visually, the likelihood represents the height of the normal 
curve at a particular score value. To illustrate, Figure 3.1 presents a graphical depiction of the 
previous likelihood values. Notice that the elevation of the normal curve is higher at an IQ 
score of 99, which is consistent with the relative magnitude of the two likelihood values.

It is also useful to view the likelihood as a measure of “fi t” between a score and the 
population parameters. In Figure 3.1, the largest possible likelihood value (i.e., the highest 
point on the distribution) corresponds to the score that is exactly equal to the population 
mean, and the likelihood values decrease in magnitude as the distance from the mean in-
creases. Returning to Equation 3.1, this implies that smaller Mahalanobis distance values 
(i.e., smaller squared z scores) produce larger likelihood values, whereas larger Mahalanobis 
distance values yield smaller likelihoods. Consequently, a score that yields a high likelihood 
value also has a good fi t because it falls close to the population mean. As you will see, inter-
preting the likelihood as a measure of fi t becomes useful when the population parameters are 
unknown.

FIGURE 3.1. Univariate normal distribution with µ = 100 and σ2 = 189.60. The likelihood values 
represent the height of the distribution at score values of 99 and 87.
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3.3 THE SAMPLE LIKELIHOOD

The goal of maximum likelihood estimation is to identify the population parameter values 
that have the highest probability of producing a particular sample of data. Identifying the 
most likely parameter values requires a summary fi t measure for the entire sample, not just 
a single score. In probability theory, the joint probability for a set of independent events is 
the product of individual probabilities. For example, the probability of fl ipping a fair coin 
twice and getting two heads is .50 × .50 = .25. Although they are not exactly probabilities, 
the same rule applies to likelihood values. Consequently, the likelihood for a sample of cases 
is the product of N individual likelihood values.

More formally, the sample likelihood is

 –.5(yi–µ)2
 1 ———— L = ∏

N

i=1 {———e σ2 } (3.2)
 √2πσ2

where the braces contain the likelihood of a single score (i.e., Equation 3.1), and ∏ is the 
multiplication operator. In words, Equation 3.2 says to compute the likelihood for each 
member of a sample and multiply the resulting values. For example, Table 3.2 shows the 
likelihood values for the IQ scores in Table 3.1. Multiplying the 20 values gives the likelihood 
for the entire sample, L = 7.89E –36 (in scientifi c notation, E –36 means to move the decimal 
to the left by 36 places). The sample likelihood quantifi es the joint probability of drawing this 

TABLE 3.2. Individual Likelihood and 
Log-Likelihood Values

IQ Li logLi

 78 .008 –4.818
 84 .015 –4.217
 84 .015 –4.217
 85 .016 –4.135
 87 .019 –3.987
 91 .023 –3.755
 92 .024 –3.710
 94 .026 –3.636
 94 .026 –3.636
 96 .028 –3.584
 99 .029 –3.544
105 .027 –3.607
105 .027 –3.607
106 .026 –3.636
108 .024 –3.710
112 .020 –3.921
113 .019 –3.987
115 .016 –4.135
118 .012 –4.396
134 .001 –6.590

Zhang Jihong
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collection of 20 scores from a normal distribution with a mean of 100 and a variance of 
189.60.

Because a number of factors infl uence the value of the sample likelihood (e.g., the 
sample size, the number of variables), there is no cutoff that determines good or bad fi t. 
Consistent with the interpretation of the individual likelihood values, it is best to view the 
sample likelihood as a measure of relative fi t. Ultimately, the likelihood (or more accurately, 
the log-likelihood) will provide a basis for choosing among a set of plausible population pa-
rameter values.

3.4 THE LOG-LIKELIHOOD

Because the sample likelihood is such a small number, it is diffi cult to work with and is prone 
to rounding error. Computing the natural logarithm of the individual likelihood values solves 
this problem and converts the likelihood to a more tractable metric. To illustrate, the right-
most column of Table 3.2 shows the log-likelihood value for each IQ score. Taking the natural 
logarithm of a number between zero and one yields a negative number, but the log-likelihood 
values serve the same role and have the same meaning as the individual likelihoods. For ex-
ample, reconsider the IQ scores of 99 and 87, the likelihood values for which are .0289 and 
.0186, respectively. The corresponding log-likelihood values are –3.544 versus –3.987, respec-
tively. Again, the IQ score of 99 has a higher likelihood than a score of 87 because it is closer 
to the mean. An IQ score of 99 also has a higher (i.e., “less negative”) log-likelihood value 
than a score of 87. The log-likelihood values still quantify relative probability, but they simply 
do so using a different metric. Consequently, values that are closer to zero refl ect a higher 
relative probability and a closer proximity to the population mean.

Working with logarithms simplifi es the computation of the sample log-likelihood. One 
of the basic logarithm rules states that log(AB) is equal to log(A) + log(B). Consequently, the 
sample log-likelihood is the sum of the individual log-likelihood values, as follows:

 .5(yi–µ)2
 1 ——–— logL = ∑

N

i=1 
log{———e σ2 } (3.3)

 √2πσ2

Returning to the data in Table 3.2, note that summing the log-likelihood values yields logL = 
–80.828. Consistent with the sample likelihood, the sample log-likelihood is a summary 
measure that quantifi es the joint probability of drawing the sample of 20 scores from a nor-
mal distribution with a mean of 100 and a variance of 189.60.

3.5 ESTIMATING UNKNOWN PARAMETERS

Thus far, I have assumed that the population parameters (i.e., µ and σ2) are known. These 
parameters typically need to be estimated from the data. Fortunately, switching to a situation 
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where the parameter values are unknown does change the previous computations. Concep-
tually, the estimation procedure is an iterative process that repeatedly “auditions” different 
values for µ and σ2 until it fi nds the estimates that are most likely to have produced the data. 
It does this by repeating the log-likelihood computations many times, each time with differ-
ent values of the population parameters. The sample log-likelihood gauges the relative fi t of 
the prospective estimates and provides a basis for choosing among a set of plausible param-
eter values. The ultimate goal of estimation is to identify the unique combination of estimates 
that maximize the log-likelihood and thus produce the best fi t to the data (i.e., the estimates 
that minimize the standardized distances between the scores and the mean).

To illustrate the estimation process, reconsider the IQ data in Table 3.1. Suppose that 
the company wants to use maximum likelihood to estimate the IQ mean. One way to identify 
the most likely value of the population mean is to substitute different values of µ into Equa-
tion 3.3 and compute the sample log-likelihood for each estimate. Table 3.3 gives the log-
likelihood values for fi ve different estimates of the population mean. (Substituting any non-
zero value of the variance into Equation 3.3 leads to the same estimate of the mean, so I 
continue to fi x σ2 at 189.60.) To begin, notice that each mean estimate yields a different set 
of individual log-likelihood values. For example, when µ = 98, an IQ score of 96 is close to 
the mean and has a higher log-likelihood (i.e., better fi t) than a score of 105. In contrast, 

TABLE 3.3. Individual and Sample Log-Likelihood Values for Five Different 
Estimates of the Population Mean

 Population mean

IQ µ = 98 µ = 99 µ = 100 µ = 101 µ = 102

 78 –4.596 –4.704 –4.818 –4.936 –5.060
 84 –4.058 –4.135 –4.217 –4.304 –4.396
 84 –4.058 –4.135 –4.217 –4.304 –4.396
 85 –3.987 –4.058 –4.135 –4.217 –4.304
 87 –3.860 –3.921 –3.987 –4.058 –4.135
 91 –3.671 –3.710 –3.755 –3.805 –3.860
 92 –3.636 –3.671 –3.710 –3.755 –3.805
 94 –3.584 –3.607 –3.636 –3.671 –3.710
 94 –3.584 –3.607 –3.636 –3.671 –3.710
 96 –3.552 –3.565 –3.584 –3.607 –3.636
 99 –3.544 –3.541 –3.544 –3.552 –3.565
105 –3.671 –3.636 –3.607 –3.584 –3.565
105 –3.671 –3.636 –3.607 –3.584 –3.565
106 –3.710 –3.671 –3.636 –3.607 –3.584
108 –3.805 –3.755 –3.710 –3.671 –3.636
112 –4.058 –3.987 –3.921 –3.860 –3.805
113 –4.135 –4.058 –3.987 –3.921 –3.860
115 –4.304 –4.217 –4.135 –4.058 –3.987
118 –4.596 –4.493 –4.396 –4.304 –4.217
134 –6.959 –6.772 –6.590 –6.413 –6.242

logL = –81.039 –80.881 –80.828 –80.881 –81.039
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substituting a value of µ = 102 into the equation reverses the relative fi t of these two data 
points because the IQ score of 105 is closer to the mean. The sample log-likelihood is the 
sum of the individual log-likelihood values, so changing the population mean affects its value 
as well. Comparing the relative fi t of the fi ve mean estimates, µ = 100 yields the highest log-
likelihood and thus provides the best fi t to the data.

The sample log-likelihood values in the bottom row of Table 3.3 suggest that µ = 100 is 
the best estimate of the mean, but thus far I have only considered fi ve possible values. I con-
ducted a more comprehensive search by computing the sample log-likelihood for mean val-
ues between 90 and 110. Figure 3.2 is a log-likelihood function that plots the resulting 
log-likelihood values against the corresponding estimates of the mean on the horizontal axis. 
The log-likelihood function resembles a hill, with the most likely parameter value located at 
its peak. Conceptually, the estimation process is akin to hiking to the top of the hill. Consis-
tent with Table 3.3, the peak of the log-likelihood function is located at µ = 100, and the 
sample log-likelihood values decrease as µ gets farther away from 100 in either direction. 
After thoroughly auditioning a range of plausible parameter values, the data provide the most 
evidence in support of µ = 100. Consequently, µ̂ = 100 is the maximum likelihood estimate 
of the mean, or the population parameter with the highest probability of producing this 
sample of IQ scores.

Next, I applied the same iterative search procedure to the population variance. Specifi -
cally, I fi xed the value of µ at 100 in Equation 3.3 and computed the sample log-likelihood 
for variance values between 50 and 450. Figure 3.3 shows a log-likelihood function that plots 
the resulting log-likelihood values against the corresponding estimates of σ2 on the horizon-
tal axis. The log-likelihood function of the variance looks very different from that of the 
mean, but it works in exactly the same way. Although it is diffi cult to determine graphically, 
the peak of the log-likelihood function is located at σ2 = 189.60. Consequently, σ̂2 = 189.60 
is the maximum likelihood estimate of the variance (i.e., the population variance that has the 
highest probability of producing the sample of IQ scores in Table 3.1).
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FIGURE 3.2. The log-likelihood function for the mean. The fi gure shows how the sample log-
likelihood values vary across a range of plausible values for the population mean. The maximum of 
the function occurs at µ = 100.
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3.6 THE ROLE OF FIRST DERIVATIVES

The random search process in the previous examples would become exceedingly tedious in 
most real-world estimation problems. In practice, software packages use calculus derivatives 
to identify the maximum of the log-likelihood function (i.e., the peak of the hill). Returning 
to Figure 3.2, the fi rst derivative is the slope of the log-likelihood function at a particular 
value of the population mean (or more accurately, the slope of a line that is tangent to a cer-
tain point on the function). To illustrate, imagine using a magnifying glass to zoom in on a 
very small section of the log-likelihood function located directly above µ = 95. Although the 
entire function has substantial curvature, the log-likelihood would begin to resemble a posi-
tively sloping straight line as the magnifying glass comes into sharper focus. The slope of this 
minute section of the log-likelihood function is the fi rst derivative (or more accurately, the 
fi rst derivative of the log-likelihood function with respect to the mean). Now imagine focus-
ing the magnifying glass on the highest point of the log-likelihood function, directly above 
µ = 100. Again, with a sharp enough focus, the log-likelihood would appear as a straight line, 
this time with a slope of zero. Figure 3.4 shows a tangent line at the maximum of the log-
likelihood function. The slope of this line is the fi rst derivative.

Obtaining the fi rst derivatives of the log-likelihood equation is tedious and involves a 
process known as differentiation. Illustrating the mechanics of differential calculus is beyond 
the scope of this chapter, but most introductory calculus texts contain the differentiation 
rules. The important point is that fi rst derivatives are equations that give the slope of each 
parameter’s log-likelihood at any given point along the function. More importantly, Figure 
3.4 suggests that substituting the maximum likelihood estimate into the derivative equation 
returns a slope of zero. This implies a relatively straightforward strategy: set the result of the 
derivative formula to zero and solve for the unknown parameter value.
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FIGURE 3.3. The log-likelihood function for the variance. The fi gure shows how the sample log-
likelihood values vary across a range of plausible values for the population variance. The maximum of 
the function occurs at σ2 = 189.60.
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To illustrate how derivatives simplify the estimation process, I used differential calculus 
to obtain the fi rst derivative of the log-likelihood function with respect to µ. The fi rst deriva-
tive equation for the population mean is as follows:

 ∂logL 1
 —–— = — (–Nµ + ∑

N

i=1
 yi) (3.4)

 ∂µ σ2

In words, the terms to the left of the equal sign read “the fi rst derivative of the log-likelihood 
function with respect to the population mean” (the ∂ symbol denotes a derivative), and the 
equation to the right of the equal sign defi nes the slope of the log-likelihood function at a 
particular value of µ. Substituting the maximum likelihood estimate of the mean into the 
equation returns a slope of zero, so the fi rst step is to set the slope equation equal zero. Next, 
multiplying both sides of the resulting equation by σ2 eliminates the variance from the for-
mula and leaves the collection of terms in parentheses equal to zero. Finally, using algebra to 
solve for µ gives the maximum likelihood estimate of the mean.

 µ̂ = ∑
N

i=1
yi/N (3.5)

Notice that Equation 3.5 is the usual formula for the sample mean.
The same differentiation process applies to the population variance. Applying differential 

calculus rules to the log-likelihood equation gives the derivative equation for the variance.

 ∂logL N 
 —–— = – —– + ∑

N

i=1
(yi – µ)2/2σ4 (3.6)

 ∂σ2 2σ2

Setting the right side of the equal to zero and solving for σ2 gives the maximum likelihood 
estimate of the variance, as follows:

 σ̂2 = ∑
N

i=1
(yi – µ)2/N (3.7)
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FIGURE 3.4. The log-likelihood function with a tangent line imposed at its maximum. The slope of 
this line is the fi rst derivative of the log-likelihood function at µ = 100.
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Notice that Equation 3.7 has N rather than N – 1 in the denominator, so it is identical to the 
usual formula for the population variance. The use of N in the denominator of the variance 
formula implies that maximum likelihood estimation yields negatively biased estimates of 
variances (and covariances). This is a well-known property of maximum likelihood that ex-
tends to more complex analyses (e.g., structural equation models, multilevel models). How-
ever, this bias is only a concern in small samples because it quickly becomes negligible as the 
sample size increases.

The previous examples are straightforward because familiar equations defi ne the maxi-
mum likelihood estimates. This is true in a limited number of situations (e.g., means, vari-
ances, covariances, regression coeffi cients), but more complex applications of maximum 
likelihood estimation (e.g., structural equation models, multilevel models, missing data 
estimation) generally require iterative optimization algorithms to identify the most likely set 
of parameter values. The expectation maximization (EM) algorithm is one such method that 
I discuss in the next chapter. Nevertheless, estimating the mean and the variance is a useful 
exercise because it provides a familiar platform from which to explore maximum likelihood.

3.7 ESTIMATING STANDARD ERRORS

The primary goal of a statistical analysis is to estimate a set of unknown model parameters, 
but obtaining standard errors for the resulting point estimates is an important secondary goal. 
The log-likelihood function provides a mechanism for estimating standard errors, and this 
too relies heavily on calculus derivatives. To illustrate, Figure 3.5 shows the log-likelihood 
functions for two data sets, both of which have a mean of 100. I used the data in Table 3.1 
to generate the top function, and the bottom function corresponds to a set of IQ scores with 
a variance that is exactly two and a half times larger than that of the data in Table 3.1. 
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FIGURE 3.5. Two log-likelihood functions for the mean. The steep function is from a sample of 20 
IQ scores with µ = 100 and σ2 = 189.60, and the fl at function corresponds to a data set with µ = 100 
and σ2 = 474.00. The two functions produce the same estimate of the mean (i.e., the maxima are lo-
cated at µ = 100), but they have very different curvatures. The steep function has a larger second de-
rivative (i.e., is more peaked) and a smaller standard error.
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Throughout this section, I refer to the top function as the “steep” log-likelihood and to the 
bottom function as the “fl at” log-likelihood. Although the two log-likelihood functions pro-
duce the same estimate of the mean (i.e., the maxima are located at µ = 100), they have a 
very different curvature. As you will see, the magnitude of this curvature largely determines 
the maximum likelihood standard error.

At an intuitive level, the curvature of the log-likelihood function provides important in-
formation about the uncertainty of an estimate. A fl at function makes it diffi cult to discrimi-
nate among competing estimates because the log-likelihood values are relatively similar across 
a range of plausible parameter estimates. In contrast, a steep log-likelihood function more 
clearly differentiates the maximum likelihood estimate from other possible parameter values. 
To illustrate, consider the log-likelihood functions in Figure 3.5. The fl at function yields log-
likelihood values of –84.518 and –83.991 at µ = 95 and µ = 100, respectively, which is a 
difference of 0.527. In contrast, the corresponding log-likelihood values for the steep func-
tion are –82.147 and –80.828, which is a difference of 1.319. Both functions yield the same 
estimate of the population mean, but the log-likelihood values from the steep function de-
crease more rapidly as µ gets farther away from 100. Consequently, the steep function better 
differentiates µ = 100 from other plausible parameter estimates. Not coincidentally, the steep 
function decreases at a rate that is two and a half times larger than that of the fl at function 
(i.e., 1.319 / 0.527 = 2.5). Recall that this is the same factor by which the variances differed.

The Role of Second Derivatives

Mathematically, the second derivative quantifi es the curvature of the log-likelihood function. 
Technically, a second derivative measures the rate at which the fi rst derivatives change across 
a function. For example, a steep log-likelihood function has rapidly changing fi rst derivatives 
(i.e., slopes), so its second derivative is large. In contrast, a fl at log-likelihood function has a 
small second derivative because its fi rst derivatives change slowly (i.e., the slopes are relatively 
fl at across the entire range of the function). To make this idea more concrete, Table 3.4 shows 
the fi rst derivatives of the two functions in Figure 3.5 (I obtained the derivatives by substitut-

TABLE 3.4. First Derivative Values for the 
Steep and Flat Log-Likelihood Functions

 Steep Flat
µ function Function

 95 0.527 0.211
 96 0.422 0.169
 97 0.316 0.127
 98 0.211 0.084
 99 0.105 0.042
100 0.000 0.000
101 –0.105 –0.042
102 –0.211 –0.084
103 –0.316 –0.127
104 –0.422 –0.169
105 –0.527 –0.211
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ing the appropriate values of µ and σ2 into Equation 3.4). Beginning at µ = 95, the fi rst de-
rivatives are positive (i.e., the slope of the log-likelihood function is positive) and decrease in 
magnitude until µ = 100, after which they become increasingly negative (i.e., the log-likelihood 
has a negative slope when µ is greater than 100). This trend is true for both functions, but 
the steep function’s derivatives change at a faster rate. Figure 3.6 shows these fi rst derivatives 
plotted against the values of the population mean on the horizontal axis. The two lines depict 
the rate of change in the fi rst derivatives, and the slopes of these lines are the second deriva-
tives. Again, the values of the second derivatives determine the magnitude of standard errors, 
such that larger second derivatives (i.e., more peaked functions) translate into smaller stan-
dard errors.

An Example: The Standard Error of the Mean

Having established some important background information, I now show how the second 
derivatives translate into standard errors. Computing a maximum likelihood standard involves 
four steps: (1) calculate the value of the second derivative, (2) multiply the second derivative 
by negative 1, (3) compute the inverse (i.e., reciprocal) of the previous product, and (4) take 
the square root of the resulting inverse. To keep things simple, I outline the computational 
steps for the standard error of the mean, but the process is identical for other parameters.

The fi rst step of the standard error computations requires the second derivative equa-
tions. Applying differential calculus rules to the fi rst derivative equations (e.g., Equation 3.4) 
produces the necessary formulas. As an example, differentiating Equation 3.4 yields the sec-
ond derivative equation for the mean, which is simply –N2/σ. As I explain later, the second 
derivative should always be a negative number, which it is in this case. The next step is to 
multiply the second derivative by negative 1. This operation yields a quantity called informa-
tion. Information quantifi es the curvature of the log-likelihood function, such that steeper 
functions produce larger (i.e., more positive) information values. The third step is to com-
pute the inverse (i.e., the reciprocal ) of the information. Taking the inverse of the information 
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gives the sampling variance (i.e., squared standard error) of the mean. Equation 3.8 sum-
marizes the fi rst three steps

 ∂2LogL –N σ2
 var( µ̂) = –[———]–1 = – [—–]–1 = — (3.8)
 ∂2µ σ2 N

where var( µ̂) denotes the sampling variance, and ∂2 symbolizes a second derivative. The right-
most term in Equation 3.8 may look familiar because it is the square of the standard error of 
the mean. Researchers typically report sampling error on the standard deviation metric rather 
than the variance metric, so the fi nal step is to take the square root of the sampling variance. 
Doing so yields σ/√��N, which is the usual formula for the standard error of the mean.

To illustrate the computation of maximum likelihood standard errors, reconsider the 
log-likelihood functions in Figure 3.5. The steep function is from a sample of 20 IQ scores 
with µ = 100 and σ2 = 189.60, and the fl at function corresponds to a data set with µ = 100 
and σ2 = 474.00. Substituting the sample size and the variance into the second derivative 
formula yields derivative values of –0.105 and –0.042 for the steep and fl at functions, respec-
tively. Visually, these values are the slopes of the two lines in Figure 3.6. Multiplying the 
second derivative values by negative 1 gives the information. Again, peaked log-likelihood 
functions produce larger information values, so the relative magnitude of the two informa-
tion values (0.105 versus 0.042) refl ects the fact that the two functions have different curva-
ture. Computing the inverse of the information yields the sampling variance of the mean (i.e., 
squared standard error), the values of which are 9.48 and 23.70 for the steep and fl at func-
tions, respectively. Notice that the sampling variances differ by a ratio of 2.5, which is the 
same factor that differentiates the second derivatives and the score variances. Finally, taking 
the square root of the sampling variance yields the standard error. Not surprisingly, the steep 
function has a smaller standard error than the fl at function (3.08 versus 4.87, respectively), 
owing to the fact that its second derivative value is larger in absolute value.

Why Is the Second Derivative Value Negative?

It may not be immediately obvious, but the fact that the second derivative takes on a negative 
value is important. To understand why this is the case, imagine a U-shaped log-likelihood 
function that is a mirror image of the function in Figure 3.2. With a U-shaped log-likelihood, 
the fi rst derivative takes on a value of zero at the lowest point on the function (i.e., the bottom 
of the valley). Consequently, setting the fi rst derivative formula to zero and solving for the 
unknown parameter value yields an estimate with the lowest possible log-likelihood value. 
The fact that the peak and the valley of a function both have fi rst derivative values of zero is 
problematic because there is no way to differentiate the “best” and “worst” parameter values 
based on fi rst derivatives alone. From the perspective of the fi rst derivative formula, the top 
of the hill and the bottom of the valley look identical because both points on the function 
have a zero slope.

Fortunately, the sign of the second derivative provides a mechanism for differentiating 
the minimum and the maximum of a function. To illustrate, imagine climbing to the top of 
the log-likelihood function in Figure 3.2 beginning at a value of µ = 95. The fi rst derivatives 
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are positive during the ascent to the top of the function and become negative on the descent 
past µ = 100. This sequence of positive to negative derivatives produces the negative sloping 
line (i.e., negative second derivative) in Figure 3.6. In contrast, imagine traversing a U-shaped 
function beginning at a value of µ = 95. In this case, the fi rst derivatives are negative during 
the descent to the minimum of the function and turn positive during the ascent back up the 
hill. Unlike Figure 3.6, this sequence of negative to positive values yields a line with a posi-
tive slope (i.e., a positive second derivative). Consequently, a negative second derivative in-
dicates that the parameter estimate is located at the maximum, rather than the minimum, of 
the log-likelihood function.

3.8 MAXIMUM LIKELIHOOD ESTIMATION WITH MULTIVARIATE 
NORMAL DATA

A univariate example is useful for illustrating the mathematics behind maximum likelihood 
estimation, but most realistic applications of maximum likelihood (including maximum like-
lihood missing data handling) rely on the multivariate normal distribution. Applying maxi-
mum likelihood to multivariate data is typically more complex because the search process 
involves several parameters. In the subsequent sections, I use the IQ and job performance 
scores from Table 3.1 to extend the previous estimation principles to two variables. A bivari-
ate analysis is still relatively straightforward, but the underlying logic generalizes to data sets 
with any number of variables.

As its name implies, the multivariate normal distribution generalizes the normal curve 
to multiple variables. For example, Figure 3.7 shows a multivariate normal distribution with 
two variables. This bivariate normal distribution retains the familiar shape of the normal 
curve and looks like a bell-shaped mound in three-dimensional space. Consistent with the 
univariate normal curve, a probability density function defi nes the shape of the multivariate 
normal distribution:

 1 Li = ————— e–.5(Yi–!)T"–1(Yi–!) (3.9)
 (2π)k/2|"|1/2

The univariate density function has three primary components: a score value, the population 
mean, and the population variance. These quantities now appear as matrices in Equation 3.9. 
Specifi cally, each individual now has a set of k scores that are contained in the score vector Yi. 
Similarly, the equation replaces the mean and the variance with a mean vector and a covari-
ance matrix (i.e., ! and ", respectively). The key portion of the formula is the Mahalanobis 
distance value to the right of the exponent, (Yi – !)T "–1(Yi – !). Despite the shift to matrices, 
this portion of the formula is still a squared z score that quantifi es the standardized distance 
between an individual’s data points and the center of the multivariate normal distribution. 
Consistent with the univariate normal density, small deviations between the score vector and 
the mean vector produce large likelihood (i.e., relative probability) values, whereas large de-
viations yield small likelihoods. Finally, the collection of terms to the left of the exponent 
symbol is a scaling factor that makes the area under the distribution sum (i.e., integrate) to 1.
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Computing Individual Likelihoods

The multivariate normal density describes the relative probability of drawing a set of scores 
from a multivariate normal distribution with a particular mean vector and covariance matrix. 
To illustrate the computations, consider the IQ and job performance scores in Table 3.1. For 
the sake of demonstration, assume that the population parameter values are as follows:

 
! = [µIQ] = [100.00] µJP 10.35

 
" = [ σ2

IQ
 
 σIQ,JP] = [189.60 19.50] σJP,IQ σ2

JP 19.50 6.83

To begin, consider the individual who has an IQ score of 99 and a job performance rat-
ing of 7. Substituting these scores into Equation 3.9 yields a likelihood value of .0018, as 
follows:

 –.5([99]–[100.00])T[189.60 19.50]–1([99]–[100.00]) 1 7 10.35 19.50 6.83 7 10.35
 Li = ——————————— e               = .0018
 

(2π)2/2|189.60 19.50|1/2

 19.50 6.83

In the context of a bivariate analysis, the likelihood is the relative probability of drawing 
scores of 99 and 7 from a bivariate normal distribution with the previous mean vector and 
covariance matrix. Visually, the likelihood is the height of the bivariate normal distribution at 
the point where scores of 99 and 7 intersect. Next, consider the case with IQ and job perfor-
mance scores of 87 and 7, respectively. Substituting these scores into the density function 
returns a likelihood value of 0.0022.

At fi rst glance, the previous likelihood values might seem counterintuitive because the 
pair of scores with the largest deviations from the mean (i.e., 87 and 7) produces the higher 
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FIGURE 3.7. A bivariate normal distribution. The population mean and variance of the IQ variable 
are 100 and 189.60, respectively, and the mean and variance of the job performance variable are 10.35 
and 6.83, respectively. The correlation between the variables is .55.
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likelihood value (i.e., better fi t). To illustrate why this is the case, Figure 3.8 shows the bivari-
ate normal distribution from an overhead perspective with contour rings that denote the el-
evation of the surface. The diagonal orientation of the contour rings follows from the fact that 
the two variables are positively correlated. This, in turn, puts the intersection of 87 and 7 at 
a slightly higher elevation (i.e., closer to the center of the distribution) than the intersection 
of 99 and 7. The Mahalanobis distance measure that quantifi es the standardized distance 
between the score vector and the mean vector accounts for the positive correlation, so the 
seemingly counterintuitive likelihood values are accurate. Interested readers can consult any 
number of multivariate statistics textbooks for additional details on Mahalanobis distance 
(e.g., Johnson & Wichern, 2007; Tabachnick & Fidell, 2007).

The Multivariate Normal Log-Likelihood

As I explained earlier in the chapter, computing the natural logarithm of the individual likeli-
hood values simplifi es the mathematics of maximum likelihood. The individual log-likelihood 
for multivariate normal data is

 1 logLi = log{————–—e–.5(Yi–!)T"–1(Yi–!)} (3.10)
 (2π)k/2|"|1/2

where the terms in the braces produce the likelihood value for case i. After distributing the 
logarithm, the individual log-likelihood becomes

 k 1 1 logLi = – —log(2π) – — log|"| – —(Yi–!)T"–1(Yi–!) (3.11)
 2 2 2
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FIGURE 3.8. The bivariate normal distribution shown from an overhead perspective. The center of 
the distribution (µ = 100, 10.35) is located in the middle of the ellipse. The location of two pairs 
of scores is marked by a •. The angle of the ellipse indicates a positive correlation between IQ and job 
performance. Because of the positive correlation, the intersection of 87 and 7 is actually at a slightly 
higher elevation (i.e., closer to the center of the distribution) than the intersection of 99 and 7.
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Although Equations 3.10 and 3.11 are equivalent, the missing data literature often uses Equa-
tion 3.11 to express an individual’s contribution to the sample log-likelihood. This formula 
will resurface in the next chapter, so it is worth mentioning at this point.

The log-likelihood values serve the same role and have the same meaning as the indi-
vidual likelihoods. For example, reconsider the individual with an IQ score of 99 and a job 
performance rating of 7. The likelihood for this case is 0.0018, and the corresponding log-
likelihood is –6.343. Next, the case with IQ and job performance scores of 87 and 7, respec-
tively, has a likelihood value of 0.0022 and a log-likelihood of –6.113. Notice that the case 
with the highest likelihood value also has the highest (i.e., least negative) log-likelihood. Again, 
the log-likelihood values still quantify relative probability, but they do so using a different 
metric. Consequently, the score values of 87 and 7 have a better relative fi t to the parameter 
values because they are closer to the center of the distribution.

Consistent with the univariate context, the sample log-likelihood is the sum of the indi-
vidual log-likelihood values, as follows:

 logL = ∑
N

i=1
 logLi (3.12)

As before, the sample log-likelihood is a summary measure that quantifi es the fi t of the 
sample data to the parameter estimates, such that higher values (i.e., values closer to zero) are 
indicative of better fi t. Again, the sample log-likelihood provides a basis for choosing among 
a set of plausible parameter values.

Identifying the Maximum Likelihood Estimates

Estimating the parameters of the multivariate normal distribution (i.e., the mean vector and 
the covariance matrix) follows the same logic as univariate estimation. Conceptually, the es-
timation routine repeats the log-likelihood computations many times, each time with differ-
ent estimates of ! and ". Each unique combination of parameter estimates yields a different 
log-likelihood value, and the goal of estimation is to identify the particular constellation of 
estimates that produce the highest log-likelihood and thus the best fi t to the data. Again, 
model fi tting programs tend to use calculus derivatives to facilitate the estimation process.

Although the logic of estimation does not change much with multivariate data, identify-
ing the maximum likelihood estimates is more complex because the search process involves 
multiple parameters. As an illustration, consider a simple bivariate analysis where the goal is 
to estimate the IQ and job performance means from the data in Table 3.1. The log-likelihood 
equation now depends on fi ve parameters (i.e., two means and three unique covariance 
matrix elements), but fi xing the covariance matrix elements to their sample estimates simpli-
fi es the illustration and has no impact on the mean estimates. Fixing the covariance matrix 
elements leaves the variable means as the only unknown quantities in Equation 3.11. I con-
ducted a comprehensive search by computing the sample log-likelihood for many different 
combinations of the IQ and job performance means. Figure 3.9 shows the resulting log-
likelihood values plotted against the values of µIQ and µJP. The log-likelihood function is now 
a three-dimensional surface with the pair of maximum likelihood estimates located at its peak. 
The orientation of the graph makes it diffi cult to precisely determine the parameter values, 
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but the maximum of the function is approximately located at the intersection of µIQ = 100 
and µJP = 10.

3.9 A BIVARIATE ANALYSIS EXAMPLE

Figure 3.9 provides a rough estimate of the variable means, but a more precise solution re-
quires differential calculus. I described the role of fi rst derivatives earlier in the chapter, so 
there is no need to delve deeper into the calculus details. Instead, I use the analysis results 
from a statistical software package to illustrate the details of a bivariate analysis. The maxi-
mum likelihood estimates of the mean vector and covariance matrix from the data in Table 3.1 
are as follows:

 
!̂ = [µ̂IQ] = [100.00] µ̂JP 10.35

 
"̂ = [ σ̂2

IQ
 
 σ̂IQ,JP] = [189.60 19.50] σ̂JP,IQ σ̂2

JP 19.50 6.83

The maximum likelihood means are identical to the usual sample means, but the variances 
and covariances are somewhat different because they use N in the denominator rather than 
N – 1. For example, the standard formula for the sample variance yields σ̂2

IQ
 
= 199.58 and 

σ̂2
JP = 7.19. The negative bias in the maximum likelihood estimates is particularly evident in 

this example because of the small sample size. However, the bias quickly becomes negligible 
as the sample size increases, so it is usually not a major concern.

Recall from a previous section that maximum likelihood standard errors involve four 
computational steps: (1) calculate the value of the second derivative, (2) multiply the second 
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derivative by negative one, (3) compute the inverse (i.e., reciprocal) of the previous product, 
and (4) take the square root of the resulting inverse. With multivariate analyses, the basic 
steps remain the same, but the computations involve matrices. Because each parameter has 
a unique derivative formula, the standard error computations start with a matrix of second 
derivatives. This so-called Hessian matrix is a symmetric matrix that has the same number 
of rows and columns as the number of parameters. The top panel of Table 3.5 shows the 
Hessian matrix for the bivariate analysis example. As seen in the table, the Hessian is a 5 by 
5 symmetric matrix where each row and column corresponds to one of the estimated param-
eters. The diagonal elements contain the second derivatives, and the off-diagonal elements 
quantify the extent to which the log-likelihood functions for two parameters share similar 
curvature. Notice that the diagonal elements of the matrix are negative, which verifi es that 
the parameter estimates are located at the maximum of the log-likelihood function.

The elements of the Hessian have a visual interpretation that is similar to that of the 
previous univariate example. To illustrate, consider the block of derivative values that corre-
spond to the variable means (i.e., the elements in the upper left corner of the matrix). Return-
ing to Figure 3.9, imagine standing midway along the IQ axis at the base of the log-likelihood 
surface. From this perspective, the log-likelihood would appear as a two-dimensional hill, and 

TABLE 3.5. Hessian, Information, and Parameter Covariance Matrices from the 
Bivariate Analysis Example

Parameter 1 2 3 4 5

Hessian matrix

1: µIQ –0.149358
2: µJP 0.426582 –4.147689
3: µ2

IQ 0 0 –0.000558
4: µIQ,JP 0 0 0.003186 –0.040073
5: µ2

JP 0 0 –0.004549 0.088466 –0.430083

Information matrix

1: µIQ 0.149358
2: µJP –0.426582 4.147689
3: µ2

IQ 0 0 0.000558
4: µIQ,JP 0 0 –0.003186 0.040073
5: µ2

JP 0 0 0.004549 –0.088466 0.430083

Parameter covariance matrix

1: µIQ 9.480000
2: µjp 0.975000 0.341375
3: µ2

IQ 0 0 3594.816100
4: µIQ,JP 0 0 369.719890 83.737176
5: µ2

JP 0 0 38.024977 13.313618 4.661474

Note. Bold typeface denotes the sampling variance (i.e., squared standard error) of each parameter estimate.
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the derivative value of –0.149 quantifi es the curvature of that hill. Similarly, imagine viewing 
the log-likelihood surface from the midway point of the job performance axis. The derivative 
value of –4.148 quantifi es the curvature of the two-dimensional hill from this angle. Finally, 
the off-diagonal element of 0.427 essentially quantifi es the extent to which the two estimates 
have similar curvature (i.e., whether their fi rst derivatives are changing at a similar rate across 
the function).

The second computational step multiplies the second derivatives by negative 1. In the 
univariate example, this operation produced a quantity known as information. In a multi-
variate analysis, multiplying the Hessian matrix by negative 1 yields the so-called informa-
tion matrix (also known as Fisher’s information matrix). As seen in the middle panel of 
Table 3.5, this step simply reverses the sign of each element in the Hessian. The main diagonal 
of the information matrix contains the information for each parameter estimate. These values 
quantify the curvature of each parameter’s log-likelihood function, holding the other param-
eters constant.

With a single parameter, taking the reciprocal of information gives the sampling vari-
ance (i.e., squared standard error). There is no division in matrix algebra, but the inverse of 
a matrix is analogous to the reciprocal of a single number. Illustrating how to compute the 
inverse of a matrix is beyond the scope of this book, and there is typically no need to perform 
these computations by hand. The important point is that the inverse of the information ma-
trix is another symmetric matrix known as the parameter covariance matrix. The bottom 
panel of Table 3.5 shows the parameter covariance matrix for the bivariate analysis example. 
The diagonal elements of the parameter covariance matrix contain sampling variances (i.e., 
squared standard errors), and the off-diagonals contain covariances between pairs of esti-
mates. These co variances quantify the extent to which two estimates are dependent on one 
another. The diagonal elements of the parameter covariance matrix are particularly important 
because the square roots of these values are the maximum likelihood standard errors. For 
example, the standard error of the IQ mean is √�9�.�4�8�0 = 3.079, and the standard error of the 
covariance between IQ and job performance is √�8�3�.�7�3�7 = 9.151. As an aside, the block of 
zeros in the parameter covariance matrix follow from the fact that the mean and the covari-
ance structure of the data are independent (e.g., recall from the earlier univariate example 
that I was able to estimate the mean without worrying about the variance). This is a well-
established characteristic of maximum likelihood estimation with complete data.

3.10 ITERATIVE OPTIMIZATION ALGORITHMS

Estimating a mean vector and a covariance matrix is relatively straightforward because the 
fi rst derivatives of the log-likelihood function produce familiar equations that defi ne the maxi-
mum likelihood estimates. Maximum likelihood estimation is actually far more fl exible than 
my previous examples imply because the mean vector and the covariance matrix can be func-
tions of other model parameters. For example, a multiple regression analysis expresses the 
mean vector and the covariance matrix as a function of the regression coeffi cients and a re-
sidual variance estimate. Similarly, a confi rmatory factor analysis model defi nes " as a model-
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implied covariance matrix that depends on factor loadings, residual variances, and the latent 
variable covariance matrix, and it defi nes ! as a model-implied mean vector, the values of 
which depend on factor means, factor loadings, and measurement intercepts (Bollen, 1989). 
Estimating one of these more complex models typically involves a collection of equations, 
each of which contains one or more unknown parameter values. Because solving for the un-
known parameter values in a set of equations can be complex, advanced applications of 
maximum likelihood estimation generally require iterative optimization algorithms. A detailed 
overview of optimization algorithms could easily fi ll an entire chapter, so I give a brief con-
ceptual explanation of the process. Eliason (1993) provides an accessible overview of a few 
common algorithms.

To understand how iterative algorithms work, imagine climbing to the top of the log-
likelihood surface in Figure 3.9. The fi rst step is to choose the starting coordinates for the 
hike. Starting the climb from a position that is close to the peak is advantageous because it 
reduces the number of steps required to get to the top. Iterative algorithms also require some 
initial coordinates, and these coordinates take the form of a set of starting values that pro-
vide an initial guess about the parameter estimates. Model fi tting programs generally default 
to a set of starting values that do not closely resemble the true parameter values (e.g., correla-
tion values of zero). However, many programs allow the user to specify starting values, and 
there are good reasons for doing so. For one, good starting values can reduce the number of 
steps to the peak of the log-likelihood function. In addition, some log-likelihood surfaces are 
diffi cult to climb because they are comprised of a number of smaller peaks and valleys. A 
good set of initial coordinates can improve the chances of locating the maximum of the func-
tion as opposed to the top of one of the smaller peaks (i.e., a local maximum).

After determining the initial coordinates, the rest of the climb consists of a series of steps 
toward the peak of the log-likelihood surface. Each step corresponds to a single iteration of the 
optimization process. Getting to the top requires a positioning device that keeps the climb 
going in a vertical direction, and the sample log-likelihood essentially serves as the algorithm’s 
altimeter. At the fi rst step, the algorithm substitutes the starting values into the density func-
tion and computes the log-likelihood. The goal of each subsequent step is to adjust the pa-
rameter values in a direction that increases the log-likelihood value. Algorithms differ in the 
numerical methods that they use to make these sequential improvements. For example, the 
EM algorithm I described in Chapter 4 uses a regression-based procedure, whereas other 
optimization routines (e.g., the scoring algorithm) use derivatives to adjust the parameters 
and improve the log-likelihood.

The log-likelihood keeps the algorithm climbing in a vertical direction, but it also de-
termines when the climb is fi nished. The fi rst few steps toward the peak often produce the 
largest changes in the log-likelihood (and thus the parameters), whereas the latter steps yield 
much smaller changes. In effect, the optimization algorithm traverses the steepest portion of 
the ascent at the beginning of the hike, and the climb becomes more gradual near the plateau. 
As the algorithm nears the peak of the function, each additional step produces a very small 
improvement in the log-likelihood value (i.e., a small change in altitude). Near the end of the 
climb, the adjustments to the parameter estimates are so small that the log-likelihood ef-
fectively remains the same between successive steps. At this point, the climb is over, and the 
algorithm has converged on the maximum likelihood estimates.
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3.11 SIGNIFICANCE TESTING USING THE WALD STATISTIC

Testing whether a parameter estimate is within sampling error of some hypothesized value is 
an important part of a statistical analysis. Maximum likelihood estimation provides two sig-
nifi cance testing mechanisms: the Wald statistic and the likelihood ratio test. This section 
outlines univariate and multivariate versions of the Wald statistic, and the next section de-
scribes the likelihood ratio test. The univariate Wald test is analogous to the t statistic from 
an ordinary least squares analysis, and its multivariate counterpart is akin to an omnibus F 
statistic.

The Univariate Wald Test

The univariate Wald statistic compares the difference between a point estimate and a hypoth-
esized value to the standard error, as follows:

 θ̂ – θ0 ω = —–— (3.13)
 SE

where θ̂ is a maximum likelihood parameter estimate, and θ0 is some hypothesized value. 
Researchers typically want to determine whether a parameter is signifi cantly different from 
zero, in which case the Wald test reduces to the ratio of the point estimate to its standard 
error. Maximum likelihood estimates are asymptotically (i.e., in very large samples) normally 
distributed, so the standard normal distribution generates a probability value for the Wald 
test. For this reason, the methodology literature sometimes refers to the test as the Wald z 
statistic.

Squaring Equation 3.13 gives an alternate formulation of the Wald test. This version of 
the test is

 (θ̂ – θ0)2

 ω = ——–— (3.14)
 var(θ̂)

where var(θ̂) is the sampling variance (i.e., squared standard error) of the parameter. Squar-
ing a standard normal z score yields a chi-square variable, so a central chi-square distribution 
with one degree of freedom generates a probability value for this version of the test. The chi-
square formulation of the Wald test is arguably more fl exible because it can accommodate 
multiple parameters.

To illustrate the Wald test, consider the covariance between IQ scores and job perfor-
mance ratings. The previous bivariate analysis produced a parameter estimate of σ̂JP,IQ = 
19.50 and a standard error of SE = 9.15. Using the Wald z test to determine whether the 
estimate is signifi cantly different from zero gives ω = (19.50—0) / 9.15 = 2.13, and referenc-
ing the test statistic to a unit normal table returns a two-tailed probability value of p = .03. 
Alternatively, Equation 3.14 yields a Wald test of ω = (19.50—0)2 / 9.152 = 4.54. Referencing 
this value against a chi-square distribution with one degree of freedom also yields p = .03, so 
the choice of test statistic makes no difference.

Zhang Jihong



78 APPLIED MISSING DATA ANALYSIS

The Multivariate Wald Test

In many situations it is of interest to determine whether a set of parameters is signifi cantly 
different from zero. For example, in a multiple regression analysis, researchers are often in-
terested in testing whether two or more regression slopes are mutually different from zero. 
In an ordinary least squares analysis with complete data, it is standard practice to use an 
omnibus F test for this purpose. In the context of maximum likelihood estimation, the multi-
variate Wald test is an analogous procedure.

The multivariate Wald test is

 ω = (#̂ – #0)Tvar(#̂)–1(#̂ – #0) (3.15)

where #̂ is a vector of parameter estimates, #0 is a vector of hypothesized values (typically 
zeros), and var(#̂) contains the elements from the parameter covariance matrix that correspond 
to the estimates in #̂. Equation 3.15 is fundamentally the same as its univariate counterpart, 
but it replaces each term in Equation 3.14 with a matrix (with a single parameter, Equation 
3.15 reduces to Equation 3.14). If the null hypothesis is true, the multivariate Wald test fol-
lows a central chi-square distribution with degrees of freedom equal to the number of param-
eters in #̂. I illustrate this test in one of the data analysis examples later in the chapter.

3.12 THE LIKELIHOOD RATIO TEST STATISTIC

The likelihood ratio test is a common alternative to the Wald statistic. Like the Wald statis-
tic, the likelihood ratio test is fl exible and can accommodate a single estimate or multiple 
estimates. However, the likelihood ratio test takes the very different tack of comparing the 
relative fi t of two nested models. Nested models can take on a variety of different forms, but 
a common example occurs when the parameters from one model are a subset of the param-
eters from a second model. For example, consider a multiple regression analysis in which a 
researcher is interested in testing whether two regression slopes are signifi cantly different 
from zero. In this situation, the regression analysis that includes both predictor variables 
serves as the full model, and a second regression analysis that constrains the regression 
slopes to zero during estimation is the restricted model. The difference between the log-
likelihood values from the two analyses provides the basis for a signifi cance test. The re-
stricted model can also differ from the full model by a set of complex parameter constraints. 
For example, in a confi rmatory factor analysis, the full model is a saturated model (e.g., a 
model that estimates the sample covariance matrix), and the restricted model is the factor 
model that expresses the population covariance matrix as a function of the factor model pa-
rameters. The so-called chi-square test of model fi t is a likelihood ratio test that compares the 
relative fi t of these two models.

The likelihood ratio test is

 LR = –2(logLRestricted – logLFull) (3.16)
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where logLRestricted and logLFull are the log-likelihood values from the restricted and the full 
models, respectively. The restricted model always has fewer parameters than the full model, 
so its log-likelihood must be less than or equal to that of the full model (i.e., because it uses 
fewer parameters to explain the data, the restricted model must have worse fi t than the full 
model). The question is whether the log-likelihood difference exceeds random chance. If the 
null hypothesis is true (i.e., the full and restricted models have the same fi t), the likelihood 
ratio follows a central chi-square distribution with degrees of freedom equal to the difference 
in the number of estimated parameters between the two models. A signifi cant likelihood ra-
tio test indicates that the restricted model does not fi t the data as well as the full model (e.g., 
the estimates in question are signifi cantly different from zero).

To illustrate the likelihood ratio test, reconsider the covariance between IQ scores and 
job performance ratings. To begin, I estimated the mean vector and the covariance matrix 
from the data in Table 3.1. This initial analysis estimated fi ve parameters (two means and 
three unique covariance matrix elements) and served as the full model for the likelihood ratio 
test. Next, I estimated a restricted model by constraining the covariance to a value of zero 
during estimation (statistical software packages routinely allow users to specify parameter 
constraints such as this). The two models produced log-likelihood values of logLFull = 
–124.939 and logLRestricted = –128.416. Notice that the log-likelihood for the restricted 
model is somewhat lower than that of the full model, which suggests that the restricted 
model has worse fi t to the data. Substituting the log-likelihood values into Equation 3.16 
gives a likelihood ratio statistic of LR = 6.96. The two models differ by a single parameter, so 
a chi-square distribution with one degree of freedom generates a probability value for the 
test, p = .008. The fact that the restricted model is signifi cantly worse than that of the full 
model suggests that the covariance between IQ and job performance is statistically different 
from zero (i.e., constraining the covariance to zero during estimation signifi cantly degrades 
model fi t).

3.13 SHOULD I USE THE WALD TEST OR THE LIKELIHOOD 
RATIO STATISTIC?

The Wald test and the likelihood ratio statistic can address identical hypotheses, so the natu-
ral question is, “Which test should I use?” The answer to this question largely depends on 
the sample size and the parameters that you are testing. The two tests are asymptotically (i.e., 
in very large samples) equivalent but can give markedly different answers in small to moder-
ate samples (Buse, 1982). The potential for different test results stems from the fact that 
some parameter estimates (e.g., variances, covariances, correlations) have skewed sampling 
distributions. These sampling distributions eventually normalize as the sample size gets very 
large, but they can be markedly nonnormal in small and moderate samples. This is a problem 
for the Wald test because it uses the normal distribution to generate probability values (Fears, 
Benichou, & Gail, 1996; Pawitan, 2000). The likelihood ratio test makes no assumptions 
about the shape of the sampling distribution, so it is generally superior to the Wald test in 
small samples.
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Statistical issues aside, there are practical considerations to examine when choosing 
between the Wald and likelihood ratio tests. First, Wald tests are easy to implement because 
most software packages produce these tests as part of their standard output. The likelihood 
ratio test is somewhat less convenient because it requires two analyses. In addition, it is often 
necessary to compute the likelihood ratio test by hand, although this is not a compelling 
disadvantage. Second, the Wald test is not invariant to changes in model parameterization 
(Fears, Benichou, & Gail, 1996). For example, researchers frequently estimate confi rmatory 
factor analysis models by fi xing either the factor variance or a factor loading to 1. These pa-
rameterizations are statistically equivalent (i.e., have the same degrees of freedom and pro-
duce the same model fi t) but are likely to produce different Wald statistics (Gonzalez & 
Griffi n, 2001). In contrast, the likelihood ratio statistic is invariant to model parameterization, 
so its value is unaffected by the choice of model specifi cation.

As a fi nal word of caution, non-normal data (particularly excessive kurtosis) can distort 
the values of the Wald test and the likelihood ratio statistic (e.g., Finney & DiStefano, 2006; 
West, Finch, & Curran, 1995). Methodological studies have repeatedly demonstrated that 
non-normal data can infl ate type I error rates, so you should interpret these tests with some 
caution. Fortunately, methodologists have developed corrective procedures for non-normal 
data, so it is relatively easy to obtain accurate inferences. I outline some of these corrective 
procedures in Chapter 5.

3.14 DATA ANALYSIS EXAMPLE 1

In the remainder of the chapter, I use two data analysis examples to illustrate maximum like-
lihood estimation. The fi rst analysis example uses maximum likelihood to estimate a mean 
vector, covariance matrix, and a correlation matrix.* The data for this analysis are comprised 
of scores from 480 employees on eight work-related variables: gender, age, job tenure, IQ, 
psychological well-being, job satisfaction, job performance, and turnover intentions. I gener-
ated these data to mimic the correlation structure of published research articles in the man-
agement and psychology literature (e.g., Wright & Bonett, 2007; Wright, Cropanzano, & 
Bonett, 2007).

Table 3.6 shows the maximum likelihood estimates along with the estimates from the 
usual sample formulas. Notice that the two sets of means are identical, but the maximum like-
lihood estimates of variances and covariances are slightly smaller in value. I previously ex-
plained that maximum likelihood estimates of variances and covariances are negatively biased 
because they use N rather than N – 1 in the denominator. However, with a sample size of 
480, the difference in the two sets of estimates is essentially trivial. As an aside, some software 
packages implement a restricted maximum likelihood estimator that effectively uses N – 1 
to compute variance components (e.g., see Raudenbush & Bryk, 2002, pp. 52–53).

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 
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3.15 DATA ANALYSIS EXAMPLE 2

The second analysis example applies maximum likelihood estimation to a multiple regres-
sion model.* The analysis uses the employee data set from the fi rst example to estimate the 
regression of job performance ratings on psychological well-being and job satisfaction, as 
follows:

 JPi = β0 + β1(WBi) + β2(SATi) + ε

Structural equation modeling software programs are a convenient platform for implement-
ing maximum likelihood estimation, with or without missing data. Figure 3.10 shows the 
path diagram of the regression model. Path diagrams use single-headed straight arrows to 
denote regression coeffi cients and double-headed curved arrows to represent correlations. In 
addition, the diagrams differentiate manifest variables and latent variables using rectangles 
and ellipses, respectively (Bollen, 1989; Kline, 2005). In Figure 3.10, the predictor variables 
and the outcome variable are manifest variables (e.g., scores from a questionnaire), and the 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 3.6. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 1

Variable 1. 2. 3. 4. 5. 6. 7. 8.

Maximum likelihood

1. Age 28.908 0.504 –0.010 0.182 0.111 –0.049 –0.150 0.015
2. Tenure 8.459 9.735 –0.034 0.173 0.157 0.016 0.011 0.001
3. Female –0.028 –0.052 0.248 0.097 0.038 –0.015 0.005 0.068
4. Well-being 1.208 0.667 0.060 1.518 0.348 0.447 –0.296 0.306
5. Satisfaction 0.697 0.576 0.022 0.503 1.377 0.176 –0.222 0.378
6. Performance –0.330 0.061 –0.009 0.690 0.259 1.570 –0.346 0.426
7. Turnover –0.377 0.016 0.001 –0.170 –0.122 –0.203 0.218 –0.180
8. IQ 0.674 0.026 0.284 3.172 3.730 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.271 5.990 6.021 0.321 100.102

Sample formulas

1. Age 28.968 0.504 –0.010 0.182 0.111 –0.049 –0.150 0.015
2. Tenure 8.477 9.755 –0.034 0.173 0.157 0.016 0.011 0.001
3. Female –0.028 –0.052 0.249 0.097 0.038 –0.015 0.005 0.068
4. Well-being 1.210 0.668 0.060 1.521 0.348 0.447 –0.296 0.306
5. Satisfaction 0.699 0.577 0.022 0.504 1.380 0.176 –0.222 0.378
6. Performance –0.331 0.062 –0.009 0.692 0.259 1.574 –0.346 0.426
7. Turnover –0.378 0.016 0.001 –0.171 –0.122 –0.203 0.218 –0.180
8. IQ 0.676 0.026 0.285 3.179 3.738 4.505 –0.707 71.040
Means 37.948 10.054 0.542 6.271 5.990 6.021 0.321 100.102

Note. Correlations are in the upper diagonal in bold typeface.
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residual term is a latent variable that captures a collection of unobserved infl uences on the 
outcome variable.

Researchers typically begin a regression analysis by examining the omnibus F test. As 
a baseline for comparison, a least squares analysis produced a signifi cant omnibus test, 
F(2, 247) = 60.87, p < .001. The likelihood ratio statistic and the multivariate Wald test are 
analogous procedures in a maximum likelihood analysis. To begin, consider the likelihood 
ratio test. The full model corresponds to the regression in Figure 3.10, and the restricted 
model is one that constrains both regression slopes to zero during estimation (the regression 
intercept is not part of the usual omnibus F test, so it appears in both models). Estimating 
the two models produced log-likelihood values of logLFull = –1130.977 and logLRestricted = 
–1181.065, respectively. Notice that log-likelihood for the restricted model is quite a bit 
lower than that of the full model, which suggests that fi xing the slopes to zero deteriorates 
model fi t. Substituting the log-likelihood values into Equation 3.16 yields a likelihood ratio 
statistic of LR = 100.18. The two models differ by two parameters (i.e., the restricted model 
constrains two coeffi cients two zero); therefore, referencing the test statistic to a chi-square 
distribution with two degrees of freedom returns a probability value of p < .001. The signifi -
cant likelihood ratio test indicates that the fi t of the restricted model is signifi cantly worse 
than that of the full model. Consistent with the interpretation of the F statistic, this suggests 
that at least one of the regression coeffi cients is signifi cantly different from zero.

For the purpose of illustration, I also used the multivariate Wald statistic to construct an 
omnibus test. Recall from Equation 3.15 that the Wald test requires elements from the pa-
rameter covariance matrix. Software packages that implement maximum likelihood estima-
tion typically offer the option to print this matrix, although it may not be part of the standard 
output. The regression model has four parameter estimates (i.e., the regression intercept, two 
slope coeffi cients, and a residual variance), so the full parameter covariance matrix has four 
rows and four columns. However, the Wald test only requires the covariance matrix elements 
for the two slope coeffi cients (i.e., the 2 by 2 submatrix that contains the sampling variance 
of each coeffi cient and the covariance between the two estimates). Substituting the regres-
sion coeffi cients (β̂ = 0.025 and 0.446) and the appropriate elements from the parameter 
covariance matrix into Equation 3.15 gives a Wald statistic of ω = 119.25, as follows:

 ω = [.025]T [–.002175 –.000720]–1[.025] = 
119.25

 .446 –.000720 .001973 .446

Job
Satisfaction

Job
Performance

Well-Being

ε

FIGURE 3.10. A path diagram for a multiple regression model. The single-headed straight lines 
represent regression coeffi cients, the double-headed curved arrow is a correlation, the rectangles are 
manifest variables, and the ellipse is a latent variable.
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Comparing the Wald test to a chi-square distribution with two degrees of freedom (i.e., there 
are two parameters under consideration) returns a probability value of p < .001. Consistent 
with the F test and the likelihood ratio statistic, the Wald test suggests that at least one of the 
regression slopes is different from zero.

Researchers typically follow up a signifi cant omnibus test by examining partial regres-
sion coeffi cients. Table 3.7 gives the maximum likelihood estimates along with those from an 
ordinary least squares analysis. As seen in the table, psychological well-being was a signifi -
cant predictor of job performance, β̂1 = 0.446, z = 10.08, p < .001, but job satisfaction was 
not, β̂2 = 0.025, z = 0.53, p = .59. The interpretation of the estimates is the same for both 
estimators. For example, holding job satisfaction constant, a one-point increase in psycho-
logical well-being yields a .446 increase in job performance ratings, on average. Notice that 
maximum likelihood and ordinary least squares produced identical regression coeffi cients but 
slightly different residual variance estimates. The two estimators share the same equations 
for the regression coeffi cients, so it makes sense that these estimates are identical. The slight 
difference between the residual variances owes to the fact that maximum likelihood variance 
estimates are negatively biased. Again, the discrepancy in this example is trivial, but the bias 
would be more apparent in small samples.

3.16 SUMMARY

Many modern statistical procedures that are in widespread use today rely on maximum likeli-
hood estimation. Maximum likelihood also plays a central role in missing data analyses and 
is one of two approaches that methodologists currently regard as the state of the art (Schafer 
& Graham, 2002). The purpose of this chapter was to introduce the mechanics of maximum 
likelihood estimation in the context of a complete-data analysis. Researchers in the social and 

TABLE 3.7. Regression Model Estimates from Data 
Analysis Example 2

Parameter Est. SE z

Maximum likelihood

β0 (Intercept) 6.021 0.051 117.705
β1 (Well-being) 0.446 0.044 10.083
β2 (Satisfaction) 0.025 0.046 0.533
σ2

e (Residual) 1.256
R2  .200

Ordinary least squares

β0 (Intercept) 6.021 0.051 117.337
β1 (Well-being) 0.446 0.044 10.050
β2 (Satisfaction) 0.025 0.047 0.531
σ2

e (Residual) 1.262
R2  .200    

Note. Ordinary least squares uses a t statistic.
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the behavioral sciences routinely assume that their variables are normally distributed in the 
population, so I described maximum likelihood in the context of multivariate normal data. 
The normal distribution supplies a familiar platform for illustrating estimation principles, 
but it also provides the basis for the missing data handling procedure outlined in subsequent 
chapters.

The goal of maximum likelihood estimation is to identify the population parameters that 
have the highest probability of producing the sample data. The sample log-likelihood is cen-
tral to this process because it quantifi es the relative probability of drawing a sample of scores 
from a normal distribution with a particular mean vector and covariance matrix. Substituting 
a score value (or a set of scores) into a probability density function returns the log-likelihood 
value for a single case, and the sample log-likelihood is the sum of the individual log-likelihood 
values. The sample log-likelihood quantifi es the fi t between the data and the parameter esti-
mates and provides a basis for choosing among a set of plausible parameter values.

Conceptually, estimation is an iterative process that repeatedly auditions different pa-
rameter values until it fi nds the estimates that are most likely to have produced the data. The 
estimation procedure essentially repeats the log-likelihood calculations many times, each 
time substituting different values of the population parameters into the log-likelihood equa-
tion. Each unique combination of parameter estimates yields a different log-likelihood value, 
and the goal of estimation is to identify the particular constellation of estimates that produce 
the highest log-likelihood and thus the best fi t to the data. In some situations, the fi rst deriva-
tives of the log-likelihood function produce familiar equations that defi ne the maximum 
likelihood estimates, but more complex applications of maximum likelihood estimation (in-
cluding missing data handling) require iterative optimization algorithms to identify the most 
likely parameter values.

The curvature of the log-likelihood function provides important information about the 
uncertainty of an estimate. A fl at log-likelihood function makes it diffi cult to discriminate 
among competing estimates because the log-likelihood values are relatively similar across a 
range of parameter estimates. In contrast, a steep log-likelihood function more clearly differ-
entiates the maximum likelihood estimate from other possible parameter values. Mathemati-
cally, the second derivative quantifi es the curvature of the log-likelihood function. Second 
derivatives largely determine the maximum likelihood standard errors, such that larger second 
derivatives (i.e., more peaked functions) translate into smaller standard errors and smaller 
second derivatives (i.e., fl atter functions) translate into larger standard errors.

Maximum likelihood analyses provide two signifi cance testing mechanisms, the Wald 
statistic and the likelihood ratio test. The univariate Wald test is the ratio of the point estimate 
to its standard error. The multivariate Wald test is similar to its univariate counterpart but 
uses matrices to determine whether a set of estimates is signifi cantly different from zero. The 
likelihood ratio test is procedurally different from the Wald statistic because it requires two 
analysis models: a full model that includes the parameters of substantive interest, and a re-
stricted model (i.e., nested model) that constrains one or more of the parameter values to 
zero during estimation. The difference between the log-likelihood values from the two mod-
els provides the basis for a signifi cance test. Like the Wald statistic, the likelihood ratio test 
is fl exible and can accommodate a single estimate or multiple estimates. The two test statis-
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tics are asymptotically equivalent, but the likelihood ratio test is generally superior in small 
samples.

Chapter 4 extends maximum likelihood estimation to missing data analyses. Concep-
tually, maximum likelihood estimation works the same way with or without missing data. 
Consistent with a complete-data analysis, the ultimate goal is to identify the parameter es-
timates that maximize the log-likelihood and produce the best fi t to the data. However, the 
incomplete data records require a slight alteration to the individual log-likelihood equation. 
Missing data also introduce some nuances to the standard error computations. I describe 
these changes in detail in the next chapter.
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